
May I? - Content Security Policy Endorsement
for Browser Extensions

Daniel Hausknecht1, Jonas Magazinius1,2,3, and Andrei Sabelfeld1

1 Chalmers University of Technology
2 CISPA, Saarland University

3 Assured Security AB

Abstract. Cross-site scripting (XSS) vulnerabilities are among the most
prevailing problems on the web. Among the practically deployed counter-
measures is a“defense-in-depth” Content Security Policy (CSP) to miti-
gate the effects of XSS attacks. However, the adoption of CSP has been
frustratingly slow. This paper focuses on a particular roadblock for wider
adoption of CSP: its interplay with browser extensions.
We report on a large-scale empirical study of all free extensions from
Google’s Chrome web store that uncovers three classes of vulnerabili-
ties arising from the tension between the power of extensions and CSP
intended by web pages: third party code inclusion, enabling XSS, and
user profiling. We discover extensions with over a million users in each
vulnerable category.
With the goal to facilitate a wider adoption of CSP, we propose an
extension-aware CSP endorsement mechanism between the server and
client. A case study with the Rapportive extensions for Firefox and
Chrome demonstrates the practicality of the approach.

1 Introduction

Cross-site scripting (XSS) [27] vulnerabilities allow attackers to inject malicious
JavaScript for execution in the browsers of victim users. XSS vulnerabilities are
among the most prevailing problems on the web [28]. The World Wide Web Con-
sortium (W3C) [38] has proposed a“defense-in-depth” Content Security Policy
(CSP) [36] to mitigate the effects of XSS attacks. A CSP policy lets websites
whitelist a set of URIs which are accepted as the sources for content on a web
page. The standard defines CSP to be transmitted in an HTTP header to the
client, where it is enforced by a CSP compliant user agent. The browsers enforce
the policy by disallowing communication to the hosts outside the whitelist. The
majority of the modern browsers support CSP [35].

The web application security community largely agrees on the usefulness of
CSP [26,40] as an effective access control policy not only to mitigate XSS but also
other cross-domain attacks such as clickjacking [25]. However, the adoption of
CSP has been frustratingly slow. Major companies lead the way, e.g. with Google
introducing CSP for Gmail in December 2014 [14], yet, currently, only 402 out
of the top one million websites actually specify a policy for their websites [6].

CSP and browser extensions. This paper focuses on what we believe is a seri-
ous roadblock for wider adoption of CSP: its interplay with browser extensions.
Browser extensions often rely on communication with websites, fetching their
own scripts, external libraries, and integrating independent services. For exam-
ple, the extension Rapportive [20], with over 320,000 users, shows information
from LinkedIn about the contacts displayed in Gmail. The functionality of this
extension depends on the ability to communicate with LinkedIn. This is in dis-
sonance with Gmail’s CSP, where, not surprisingly, LinkedIn is not whitelisted.

As mentioned above, Google recently started enforcing a CSP policy for
Gmail. To be more precise, Google changed CSP from report-only to enforcement
mode [14]. This resulted in immediate consequences for both the Firefox and
Chrome versions of the Rapportive extension. Interestingly, the consequences
were different for Firefox and Chrome. The Firefox extension no longer runs. As
we will see later in the paper this is related to Firefox’ conservative approach to
loading external resources by extensions. After an update, the Chrome version
of the extension has been adapted to the change that allows it to run. It is
possible because the new CSP for Gmail includes neither a connect-src nor
a default-src directive, which allows scripts injected by browser extensions
to open connections to remote servers. Rapportive uses this permissiveness in
Gmail’s CSP to load the LinkedIn profile information into the web page rendered
in Chrome. This different behaviors of Rapportive with Firefox and Chrome
exemplify the differences in the browser extension frameworks, motivating the
need to investigate these differences deeper.

The above highlights the tension between the power of extensions and CSP
intended by web pages. Website administrators are in a difficult position to
foresee what browser extensions the users have installed. This indeed hampers
the adoption of CSP.

Research questions The paper focuses on two main research questions: Q1: What
is the state of the art in resolving the tension between the power of browser
extensions and restrictions of CSP? and Q2: How to improve the state of the art
as to leverage the security benefits of CSP without hampering the functionality
of browser extensions?

The state of the art To answer Q1, we perform an in-depth study of practices
used by extensions and browsers to deal with CSP. Within the browser, browser
extensions have the capabilities to modify HTTP headers and content of the
page. Injecting content to the page is common among extensions to add features
and functionality. CSP applies also to this injected content, which may break
or limit the functionality of the extension. To maintain the functionality and
added user experience, extensions require the needs for relaxing the policy of
the page. Because extensions have the capability to modify page headers, and
to execute before a page is loaded, extensions have the window of opportunity
to relax or even disable the CSP policy before it is applied. Changing the CSP
header undermines high security requirements of a web service, e.g. for online

banking, or simply bypass the benign intentions of a web application provider.
Relaxing or removing the CSP of a web page disables this last line of defense.

Empirical study We address Q1 by a large-scale empirical study of all free 25835
extensions from Google’s Chrome web store [10]. We have analyzed how browser
extensions make use of their capability to modify the CSP header. We are also
interested in how the presence of a CSP header affects content injection through
browser extensions, i.e. the practical effects of CSP on extensions.

To understand the prevalence of invasive modifications, we have developed
tools to identify such extensions and analyze their behavior in the presence of
a CSP policy. The results are two-fold, they show that invasive modifications
are very common in extensions, but at the same time manipulation of the CSP
headers are still rare.

Vulnerability classes uncovered With the insights from the empirical study at
hand, we categorize the findings to identify three classes of vulnerabilities that
arise from invasive modifications that relax or disable the CSP policy. First,
the extension injects third party content that increases the attack surface and
introduces attack vectors that can be used for further attacks previously not
present in the page. Second, it opens up for XSS attacks that would have been
mitigated in otherwise hardened web pages. Third, the extension injects code
that allows its developer to perform user tracking during the browser session.
The invasive modifications described in these scenarios constitute a risk to both
the user and the web service. Because extensions are applied either to a specific
set of pages or all browsed pages, the impact varies. Naturally, an extension that
is applied to every page puts the user at greater risk.

There exist, however, cases of content injections with which a web service
would comply. For example, a web service provider that trusts the provided
content of another service agrees to allow the modified CSP. By default the
service does not include the third party content and therefore does not include
the origin of the content in its CSP to be as restrictive as possible and thus to
obtain the best protection for the web page. In this case, a relaxation of the
CSP made by an extension would be acceptable. This brings out to the second
research question and motivates a mechanism for detecting and endorsing CSP
modifications to detect and agree on a policy acceptable by the web service.

CSP endorsement To address Q2, we propose a mechanism that enables extension-
aware CSP endorsement by the server of the client’s request to modify CSP. We
expand the event processing of extensions in web browsers to detect CSP modi-
fications made by an extension. On detection, the browser collects the necessary
information and sends a request to the server which decides over accepting or
rejecting the CSP modification. The browser eventually enforces the CSP policy
respecting the server’s decision. Additionally to the basic mechanism, we also
propose an optimization with which the browser itself is able to make decisions
based on origins labeled as acceptable by the web server, in order to obviate the
need of sending CSP endorsement messages.

Note that the mechanism provides higher granularity than simply including
a whitelist in the original CSP that attempts to foresee what extensions might
be installed and relax CSP accordingly. Such an over-approximating whitelist
would not be desirable to transport for performance reasons. Instead, our CSP
endorsement allows making on-the-fly decisions by the server depending on the
context and grants the flexibility of not having to send a complete whitelist
in the first phase. We have implemented the CSP endorsement mechanism for
Firefox and Chrome, and an endorsement server using Node.js [17].

Rapportive case study We have conducted a case study to analyze the usefulness
of the CSP endorsement mechanism. For this, we have implemented a Firefox
and a Chrome extension that models the behavior of Rapportive and used it to
report the performance of the prototype implementation.

Contributions In summary, the paper’s contributions are as follows:

– Large-scale empirical study to analyze the behavior of Chrome browser ex-
tensions in the context of CSP (Section 2).

– Identification of vulnerability classes stemming from modifications of CSP
policies by extensions (Section 2).

– Analysis of browser extension framework behavior and the implications for
resource loading in the presence of a CSP (Section 3).

– Development and prototype implementation of an extended CSP mechanism
which allows the endorsement of CSP modifications (Section 4).

– Case study with the Rapportive extension to demonstrate the practicality
of the approach (Section 5).

The program code for our prototype implementation is available online4.

2 Empirical study

Browser extensions are pieces of software that can be plugged into web browsers
and extend its basic functionality. Depending on the development interfaces and
used technologies, the capabilities of extensions vary depending on the respective
browser but powerful in general. For example, all major browsers enable exten-
sions to intercept HTTP messages and to modify their headers, or to tweak the
actual page content. Though this allows of course augmenting a user’s browsing
experience, this can willingly or unwillingly affect a web page’s security.

In the following section, we analyze all 25835 free extensions from Google
Chrome store in order to learn how browser extensions modify web pages in
practice and how these modifications affect a page’s security, in particular with
respect to CSP policies. We classify our findings and identify popular real world
examples while following the principle of responsible disclosure.

4 http://www.cse.chalmers.se/~danhau/csp_endorsement/

http://www.cse.chalmers.se/~danhau/csp_endorsement/

2.1 Extension analysis

Many extensions modify the browsed page when loaded, however some do it
more invasively than others. In order to understand how web pages are affected
by extensions and their relation to CSP we perform an empirical study. The aim
of the study is to see how many extensions are doing invasive modification to the
web page source. An invasive modification is here defined as injecting content
that poses a threat to the confidentiality or integrity of the page in the relation
to user assets. Examples of such invasive modification are inclusion of scripts
referring to potentially malicious external code, inclusion of scripts designed to
track the user’s browsing habits, and modifications that disable the browser’s
built in protection, e.g., against cross-site scripting attacks.

Large-scale study This study was performed by downloading (on December
20, 2014), extracting, and analyzing the source of each of the complete set of
free extensions available in the Google Chrome store at the time of the analysis.

To perform the study we developed simple tools to automate the process of
downloading extensions from the store and extracting their sources.

Only the scripts of the extension itself (called content scripts) can do invasive
modifications to page content. Therefore, the analysis was limited to the subset
of extensions that had content scripts defined. For each extension in this set
each individual content script was analyzed to find invasive modifications that
manifest themselves by injecting scripts or references to external resources. At
last, we split the set into those that are applied to specific pages, versus every
page. Due to the large number of extensions that modify the page, the analysis
was to a large part automated.

To find extensions that modifies the CSP the set of extensions that in any
form mentions content security policy or CSP. Each of these were manually in-
spected to see exactly how CSP is used. Because these extensions were manually
inspected the numbers are exact.

A total of 25853 extensions were downloaded and analyzed. Out of these,
about 1400 (5 %) of the existing extensions do invasive modifications to browsed
pages, less than 0.2 % of all downloaded extensions take CSP into consideration.
This suggests that the currently low adoption of CSP among major web sites
makes invasive page modifications relatively rare and modification of the CSP
header largely superfluous. If the technology reaches more wide-spread use, this
will pose an issue for the large part of these extensions, who would in turn have
to adapt. Table 1 summarizes these results.

Extension categories The results have been categorized in two main cate-
gories: extensions that invasively modify pages, and extensions that modify the
CSP-header. The first category includes extensions that modify pages in a way
that is restricted by the CSP policy if one is in place. In the later category we dis-
tinguish between different ways in which the CSP policy is modified, restricting,
relaxing, replacing, or removing the policy, as can be seen in Table 1.

Specific pages All pages Total

Modify page 651 781 1432
Modify CSP 20 25 45
- Restrict 1 4 5
- Relax 11 18 29
- Replace 2 2 4
- Remove 6 1 7

Fig. 1: Extension behavior with respect to page content and CSP modification

The main set of extensions that modify the CSP relaxes the policy to include
a few additional domains. This is typically required for the extension to load
external resources from these sources. A small number of extensions were found
to make the policy stricter. These restrictions are generally made by extensions
that allow the user to control what resources should be loaded and allowed to
execute. Some extensions replace the policy. Here the new policy were either
an “allow all” or “allow none” policy. Lastly, some extensions removed any CSP
policy entirely. This allows the extension to add any content without restrictions.

Taking into account that extensions can be applied to different pages differ-
ently, the categories are further divided into the set of extensions that perform
modifications on a single or small number of pages, and those that apply them-
selves to every page. The latter set of extensions are more of a concern as they
potentially introduce vulnerabilities on every page visited by the user.

Vulnerability classes Many extensions rely on being able to inject content
in the pages they are applied to. For these extensions a restrictive CSP policy
prevents them from functioning as intended. Some of them bypass this restriction
by modifying the policy to suit their needs. Extensions that modify the CSP
header can inadvertently, or intentionally, weaken the security of a web page.
Attacks that would have been prevented by the policy again pose a threat as a
result of disabling or relaxing the policy.

We identify three classes of vulnerabilities to potentially expose web pages,
and in that also the user, as a direct result of installing an extension that modifies
the CSP. All three cases can be mitigated by a solid CSP policy.

Third party code inclusion: As documented by Nikiforakis et al. [24], including
third party code weakens the security of the web page in which it is included.
A real-life example is the defacement of the Reuters site in June 2014 [31], at-
tributed to “Syrian Electronic Army”, which compromised a third-party widget
(Taboola [34]). This shows that even established content delivery networks risk
being compromised, and these risks immediately extend to all web sites that
include scripts from such networks.

Upon loading a page, certain extensions inject and load third party code in
the page itself, out of the control of the page. The included third party code
can be benign in itself, but broadens the attack surface in an unintended way.

Or, it contains seemingly benign code that may be malicious in the context of
a specific page. For external resources the included code may change over time,
making it next to impossible to tell for certain what code will actually execute.

A prominent example of such an extension has at present around 1.9 million
users. The extension allows the user to select a section of the page to be saved for
viewing offline at a later point. In order to do so, it injects a script tag in every
browsed page from a domain under the control of the developers. Should the
developer have malicious intentions, or the domain be hacked, it would take no
effort to exploit every web page visited by their 1.9 million users. By inspecting
its code and stated purpose, it is most certainly believed to be benign, yet it
displays the vulnerable behavior described above.

Enabling XSS: Recall that CSP is intended to be a “last line of defense” against
XSS attacks by optionally disabling inline code and restricting resource ori-
gins to a small set of trusted domains. Extensions that modify the CSP pol-
icy open up for otherwise prevented attacks, in particular extensions that add
the unsafe-inline or unsafe-eval to the script-src, style-src or even
default-src directives. This allows to directly inject arbitrary code into the
web page and to execute it.

One high-profile extension, at the time of writing having more than 2.8 mil-
lion users, allows the user to define scripts that will execute when certain pages
are browsed, e.g., to load aggregated information or dynamically set the back-
ground color of pages during night time. To allow the user defined scripts full
freedom to execute, the extension removes the CSP-header on every browsed
page. While perhaps written with good intentions, the extension subjects the
user to additional exposure on pages that are normally protected by a CSP
policy.

User profiling: Profiling a user’s habits can be a lucrative source of information.
A large number of extensions add content that allows its developer to track
the user’s movements across the Internet, page by page. In an extreme form of
tracking, some extensions add Google Analytics to every browsed web page with
their own Google Analytics ID, enabling comprehensive user profiling.

One extension, with possibly unsuspecting 1.2 million users, stands out in
this respect. The official description states that the extension offers an extended
set of smileys on a small and specific hardcoded set of web pages. Aside from
this, the extension injects itself in every page and adds a Google Analytics script
with own ID.

3 Extension framework analysis

An important goal for our work is understanding the behavior of extensions in
different browsers. Our attention is focused on the current stable release versions
of Firefox (v35.0.1), Chrome (v40.0.2214.111), Opera (v27.0.1689.66) and Safari
(v8.0.3) whose extensions are especially popular. In particular, we want to know
how browsers restrict loading of resources initiated by an extension.

In this respect, we first describe in this section a simple scenario for loading
a sequence of different resources which we use to examine the behaviors of the
afore mentioned browsers. We then demonstrate the real world implications of
the different browser behaviors with a case study on LinkedIn’s browser extension
Rapportive for Firefox and Chrome.

3.1 Resource loading through content scripts

There are two ways of loading resources: first, the content is loaded by the ex-
tension itself directly into the extension. Second, a target web page is modified
to load the content as part of the page itself. In Chrome, e.g., loading a script
is done by injecting an HTML element either in the extension’s internal back-
ground page or the web page, respectively. Loading within an extension is in
Chrome restricted through a CSP defined in its manifest file [12]. This CSP
is defined by the developer herself and applies only to the extension, not to
browsed web pages. Since extension security is already extensively discussed in
literature [18,1,32,4,5,7], we focus on loading of resources in the context of web
pages deploying CSP policies.

We have set up a simple scenario in various browsers to test possible content
script behavior. We illustrate the setup in Figure 2. In the first step, an extension
injects an HTML script element with a script script1.js from a server server1
into the visited web page’s DOM. This causes the browser in a second step to
load the script from the given URI. Third, the code of script1.js injects yet
another HTML script element with a script script2.js from a server server2
into the same web page (step 3). The browser again loads the script from the
server (step 4) but this time generates a dialog message indicating that the
loading of script2.js was successful (step 5).

(1) inject script
element

(5) show dialog

(4) load script2.js

(3) inject script
element

(2) load script1.js

server2.com

server1.com

Fig. 2: Experiment set-up for evaluating the behavior of browsers for resource
loading initiated by extensions

We have implemented the same scenario for various browsers and have tested
the content script behavior of the respective extensions in the presence of CSP.
We have chosen example.com as our target page. Since it does not define a
CSP, we have added the most restrictive policy default-src ’none’ to the
HTTP headers. The content scripts of Firefox extensions become part of the
web page they are injected in. Consequently, the page’s CSP directly applies to
the content scripts and the loading of script1.js (step 2) is already blocked.
We have observed a different behavior for Chrome, Opera and Safari. In these
browsers, the content script successfully injects and loads the first script (steps
1-3). Step 4 and 5, however, are not executed since script1.js is full part of the
web page and thus requesting script2.js is blocked by its CSP. Surprisingly,
this behavior has been observed regardless of the web page’s or the extension’s
internal CSP. This implies that even with a most restrictive CSP policy for the
web page and browser extensions, an extension is always able to send requests to
arbitrary servers, potentially leaking sensitive user information. Thus, extensions
for these browsers can actively circumvent the CSP security mechanism. We show
our results in Figure 3.

Browser script1.js form server1.com script2.js from server2.com

Firefox blocked blocked
Chrome/Opera loaded blocked
Safari loaded blocked

Fig. 3: Different browser behavior for content loading in the scenario from Fig. 2

3.2 Case study: Rapportive

Rapportive [20] is LinkedIn’s browser extension which augments Google’s email
service Gmail [13] with LinkedIn profile information. This extension modifies the
Gmail web page such that when a user composes an email, it automatically tries
to look up the recipient’s LinkedIn account information and presents it as part of
the Gmail web page to the user. More technically, Rapportive dynamically loads
scripts from LinkedIn within the extension and injects them through a content
script into the Gmail web page. The injected scripts are then responsible for
fetching the addressee’s LinkedIn profile information.

Rapportive as an extension contains only scripts to dynamically download
other scripts from rapportive.com, linkedin.com and LinkedIn subdomains,
which provide the actual functionality of the extension, the fetching and display-
ing of profile data. In Rapportive for Firefox and for Chrome, user scripts are
responsible for injecting HTML elements which load the respective online code
into the web page. In case of Firefox, this is done by injecting an HTML script

element from rapportive.com. However since content scripts are treated as part
of the web page, Firefox immediately blocks its loading and consequently breaks

the functionality of Rapportive. Ironically, users blamed LinkedIn, not Gmail,
for breaking the extension [30]. Rapportive for Chrome, on the other hand, has
been updated in reaction to Gmail’s deployment of a CSP. The extension makes
active use of Chromes behavior to load resources directly injected by user scripts
and injects an iframe with a resource from api.linkedin.com. In accordance
with the standard, the CSP of a host page does not apply to the content of an
iframe. Therefore, every subsequent loading is done within the iframe.

4 CSP endorsement

The implementations of Rapportive relies on the fact that the CSP policy of
Gmail only restricts script, frame and plugin sources but is otherwise fully per-
missive, e.g. it does not hinder loaded script code to load resources from servers
through, e.g., XMLHttpRequest. A web page’s CSP policy is, however, most ef-
fective only if it is most restrictive. This can conflict with the injection behavior
of extensions and eventually break their functionality. In this section we develop
a mechanism that allows web applications to deploy a most restrictive CSP pol-
icy while guaranteeing the full functionality of browser extensions which inject
resources from trusted domains into a web page. We first introduce a general
mechanism to allow requesting endorsement of a new CSP by a web server if it
is required for the seamless functioning of installed extensions. After that, we
present our prototype implementation for Firefox and the Chrome browser.

4.1 Endorsement workflow

A web browser’s main purpose is to request web pages usually via HTTP or
HTTPS from a web server. In most major web browsers, these requests as well
as their respective responses can be intercepted by extensions. In order to do
so, an extension registers a callback function for the respective events, e.g. the
event that occurs on receiving a response message. An extension can then modify
the HTTP CSP header in any possible way or even remove it from the HTTP
response. But since browsers are responsible for calling an extension’s registered
event handler function, the browser can also analyze their returned data. In
particular, a browser can detect when the CSP header in an HTTP response
was modified by an extension. On detection, we want to send a message to a
specified server to inform about the CSP modification and request a server-side
decision if the change is acceptable. This of course requires a server mechanism
that allows the processing of CSP endorsement requests. In the following, we
describe the workflows and interplay of both, the web browser and the web
server, for CSP endorsements.

Browser improvement On detection of a CSP header modification, we need
to notify the server which accepts and processes CSP endorsement requests.
To make use of existing features and to ensure backwards compatibility with
the current standard, we use the URI provided in the existing CSP directive

report-uri for determining the CSP endorsement server. Additionally, we in-
troduce a new keyword ’allow-check’ that can be added to the report-uri

directive. If this keyword is set, the HTTP server notifies the browser that the
report server is capable of handling endorsement request messages. Otherwise,
the browser behaves as without the endorsement mechanism in place.

The overall extended browser behavior is as follows: if the CSP is set to be
enforced in the browser and the ’allow-check’ flag is set in the report-uri

directive, the browser sends a CSP endorsement request message to the report
server whenever a CSP modification has been detected. In case the flag is missing,
it is assumed that the server does not accept endorsement requests and the
browser falls back to the current standard behavior. The same fall-back behavior
is applied in report-only mode, even when the flag is set. The reason is, because
the CSP is not enforced, the extension functionality is not affected by the CSP
and endorsement requests are thus redundant. Note that in any case the standard
behavior for CSP is not affected at all. For example even when ’allow-check’ is
defined, reports are sent out for every CSP violation as defined by the standard.

We show the basic workflow for the browser and the endorsement server in
Figure 4. For our protocol to work, we assume a browser that implements our
endorsement mechanism and additionally has at least one extension installed
that modifies the CSP in the HTTP headers of received messages. The initial
situation is that the browser sends a page request to an HTTP server and receives
a response including a CSP header. The browser checks the CSP in the received
header if the policy is enforced, if it includes the report-uri directive with a
report URI and the ’allow-check’ directive. In case of a positive check, the
browser stores a copy of the received CSP. Subsequently, the browser triggers
the on-headers-received5 event which allows the installed extensions to access
and modify the header fields. If any of the checks so far has been negative,
the browser continues just as without the endorsement mechanism. If however
all checks before the event call have been positive, the modified CSP headers
are compared with the original ones. When a CSP modification is detected, the
browser sends the updated CSP policy to the endorsement server. The server’s
URI is retrieved from the report-uri of the original CSP to prevent malicious
extensions from redirecting endorsement requests to the attacker’s server. The
endorsement server decides whether to accept or reject the CSP modification and
transfers the result back to the browser. In case the modified CSP is accepted,
the browser continues with the new policy. In case of rejection, the browser
falls back to the initially received CSP and discards the modifications. Any
subsequent page handling, e.g. the page rendering, is kept unchanged regardless
the server’s decision. This means in particular that the CSP is enforced normally
and violations are reported as defined by the current standard.

Endorsement server The endorsement server is the entity which accepts mes-
sages reporting CSP policy modifications and makes the decision if the modified

5 The actual name of the event depends on the browser implementation.

Browser HTTP server
CSP endorsement

server

page request

HTTP response incl. CSP

extension: CSP modification

CSP modification notification

Response: Accept / Decline

Accept: continue with modified CSP
Decline: fall back to original CSP

render page

Fig. 4: CSP endorsement workflow

policy should be applied or discarded by the browser. On receiving an endorse-
ment request message, the server must return a message containing either Accept
or Reject. Otherwise, there are no restrictions on how to implement the server’s
decision making process. However, we suggest a server-side whitelisting as an
intuitive and relatively easy to implement concept as the basis for the decision
making process. For the remainder of this paper, we assume a server implemen-
tation using the whitelisting strategy.

One possible way to obtain a proper whitelist is to evaluate received CSP
violation reports and endorsement request messages. A server administrator can,
for example, extract the most frequent domains and analyze them in terms of
trustworthiness. Depending on the administrator’s decision, she can then update
the whitelist with the validated domains. This method allows a half-automated
and incremental maintenance of the CSP endorsement whitelist.

Optimization The CSP policy is read out and fixed before page rendering. This
implies that the modification and endorsement of CSPs must be finished before
page rendering, i.e. the browser must interrupt the page loading process until a
decision is made. This blocking behavior comes with an obvious performance and
user experience problem. Intuitively, the loading is delayed for a full round-trip
time (endorsement request message plus server response) and the computation
time for making the decision itself.

To address this issue, we optimize the endorsement approach by introducing
a separate whitelist sent in addition to the CSP policy. This allows for decision
making in the browser on behalf of the endorsement server. The whitelist reflects
in essence the list used for server-side decision making. But since the server-side
whitelist might be relatively large, it is sufficient to send only a sublist with
the most frequently endorsed trusted domains. Before sending an endorsement
request, the browser is now enabled to accept or reject a CSP modification

itself based on this list. The main motivation for a separate list and for not
including trusted domains directly in the CSP, is to keep the actual CSP policy as
restrictive as possible while still informing the browser which URIs are acceptable
to be added to the CSP.

We do not require the whitelist to be complete. Therefore, if a modification
is rejected by the browser, it must still send the endorsement request to the
server because the rejected domains might be included in the complete server-
side list. In case the modification is accepted, the whitelist is sufficient and the
browser can immediately proceed with processing the page. Thus, for a positive
client-side evaluation of CSP modifications the endorsement request must not be
sent resulting in an effective performance gain. We evaluate the performance of
our prototype implementation and the improvement through the optimization
in Section 5.

4.2 Prototype implementation

Browser modification We have implemented our approach for Firefox Nightly
version 38 [23] and Chrome version 41 [11]. For Firefox, we have adjusted the
browser’s observer mechanism to detect CSP header modifications, to store the
original header for potential later client-side decision making and to subsequently
trigger the CSP endorsement mechanism. For Chrome, we have modified the
browsers event handler in a way that it triggers our mechanism on returns of the
onHeadersReceived event. The return value of this API function contains the
modified CSP header value. The storage of the initially received header for later
comparison is done automatically by Chrome. Both browser implementations
have in common that whenever a CSP header has been modified, they check for
the CSP enforcement mode and the presence of the ’allow-check’ flag in the
report-uri directive of the original CSP. If both checks succeed, the browsers
try too extract the whitelist from the csp-whitelist HTTP header. If one is
provided, the browsers try to make a decision without any further server requests.
However if the check is negative, a CSP endorsement request is sent to the first
server given in the report-uri directive. On receiving a reply from the server
with Accept, the browsers proceeds as without our code extension and eventually
replace the initially received CSP with the modified version. Otherwise, the CSP
header is modified in the usual way.

The implementation of the browser internal decision making expects a JSON
formatted whitelist in which the attributes match the directive names and their
values define a list of URIs which are accepted to be added to the respec-
tive directive in the CSP. Additionally, there can be the attribute general

which value denotes a list of URIs accepted to be added to any directive in
the CSP. If any of the attributes is missing it is treated as it would contain
an empty list, i.e. no modification is permitted for the respective directive. We
show whitelist examples in Listing 1.1 and 1.2. The first example allows adding
https://platform.linkedin.com/ to every directive and defines specific URIs
allowed to be added to the script-src and the frame-src directive, respec-
tively. The second example does not allow any URI to be added to any directive

which effectively rejects all CSP modifications. Note that removing URIs from
the policy is not forbidden since that would make the policy only more restrictive
but does not introduce any potential security risks.

Listing 1.1: whitelist policy accepting CSP modifications for Rapportive

1 { ” gene ra l ” : [” https : // plat form . l i n k e d i n . com/”] ,
2

3 ” s c r i p t−s r c ” : [” https : // rappor t i v e . com/” ,
4 ” https : //www. l i n k e d i n . com/”] ,
5

6 ” frame−s r c ” : [” https : // api . l i n k e d i n . com/”] }

Listing 1.2: modification acceptance policy rejecting any modification

1 { ” gene ra l ” : [] }

Endorsement server implementation We have implemented a CSP modifi-
cation endorsement server using the Node.js [17] runtime environment. We have
implemented the same whitelist behavior as for the client-side decision making in
the browser. This means that the server implementation accepts the same JSON
formatted whitelist as the server configuration and uses the same algorithm to
decide whether to accept or reject a policy modification.

5 Evaluation

We have used Rapportive in a case study to empirically gain experience regarding
the applicability and effectiveness of our approach. In the following, we introduce
the general setup and report on the results collected from our experiments.

5.1 Experiment set-up

For all our experiments we have used a Dell Latitude with an Intel i7 CPU
and Ubuntu 14.10 operating system. Since we have implemented our approach
for Firefox and Chrome, we have been able to analyze the implementations of
Rapportive for both browsers.

In reaction to Gmail’s CSP change from report-only to enforcement mode [14],
LinkedIn has adjusted Rapportive for Chrome to not conflict with the policy.
However, at the time of writing the paper, the Firefox counterpart has no longer
been functioning since the dynamic loading of the necessary scripts is blocked
by the CSP policy. We have implemented extensions for both browsers with the
exact same functionality as Rapportive, except that our extension also modifies
the CSP header and adds the necessary URIs to the policy. For convenience, we
refer to our extension implementations as ”Rapportive” in the remainder of this
paper since they behave otherwise exactly the same.

Gmail deploys a CSP policy whitelisting resources for the script-src,
frame-src and the object-src directive, respectively. The policy does not in-
clude the default-src directive which implies that there are no restrictions on
other ways of loading content than the just mentioned ones, e.g. loading of con-
tent with XMLHttpRequest. Violation reports are sent to the URI defined in the
CSP’s report-uri directive. The complete CSP policy which had been in place
during our experiments is provided in Appendix A.

The implementation of our approach uses the first report URI as the URI
of the CSP endorsement server. In order to conduct experiments with Gmail,
we have therefore installed a local proxy server, using mitmproxy [22], which
replaces Gmail’s report URI with the one of our CSP endorsement server and
appends the ’allow-check’ keyword. Depending on the experiment, we have
also added the csp-whitelist header with the respective whitelist. Any other
header, including the rest of the CSP header, has been left unchanged and for-
warded to the browsers.

As the endorsement server, we have installed our Node.js based server im-
plementation on the same machine as we have run our browser experiments.
This allows easier repetition of the experiments and avoids misleading network
latencies. At the same time we believe this set-up to be sufficiently expressive
for analyzing the general performance of our implementation.

5.2 Results

We have conducted experiments with the three possible execution modes of our
approach: sending of endorsement requests with full server-side decision making,
receiving the modification acceptance whitelist with full client-side decision mak-
ing, and mixed decision making, i.e. the additional whitelist sent with the HTTP
response is not sufficient for making a client-side decision and an endorsement
request is sent subsequently.

In all experiments, Rapportive relaxes Gmail’s CSP by adding the three
URIs https://rapportive.com/, https://platform.linkedin.com/ and
https://www.linkedin.com/ to the script-src directive, and to the frame-src
directive the URI https://api.linkedin.com/.

For each scenario we have measured the time overhead of the overall endorse-
ment process, the browser internal decision making process and the round-trip
time needed to request a decision from the CSP endorsement server. The results
for both browsers are summarized in Figure 5 and depict the average times of
200 samples.

Server-side decision making In our first experiment the endorsement server ac-
cepts all CSP modifications using the policy shown in Listing 1.1. The main ob-
servation is that the most time is consumed by the server-side processing which
itself is almost completely the time for sending and receiving the endorsement
messages. For Firefox, the browser internal processing is even so small that it is
hardly noticeable. Note that the transmission times are relatively short because
all components are located on the same machine. For an external endorsement

0 µs 5 µs 10 µs 15 µs 20 µs 25 µs 30 µs 35 µs

client-side processing server-side processing incl. networking

client- and server-side

(a) Firefox

client-side only

server-side only

0 µs 5 µs 10 µs 15 µs 20 µs 25 µs 30 µs 35 µs

(b) Chrome

client- and server-side

client-side only

server-side only

Fig. 5: Time overhead of client-side only, server-side only, and server-and client-
side decision making with the respective standard deviations

server the message round-trip times increase accordingly. The results are shown
in the first bars of each diagram for the respective browsers in Figure 5.

Client-side decision making In the second experiment, the proxy injects the
whitelist from Listing 1.1, i.e. it matches exactly the URIs added by Rapportive.
The resulting overhead is exactly the time required to come to a client-side deci-
sion. For a human user, this delay is not noticeable and the browsing experience
is not affected at all. The results are shown in the second bar of each diagram
for the respective browsers in Figure 5.

Mixed decision making The last experiment in essence combines both previous
ones. However, the whitelist added by the proxy is not sufficient to come to a
positive decision on the client side. As a result, an endorsement request is sent
to the server subsequently. The time overhead is, similar to the first experiment,
dominated by the communication with the endorsement server. Though in this
last scenario the browsers also try to make a decision based on the received
csp-whitelist header, the measured times are similar to the ones in the sec-
ond experiment and the delays not noticeable for a human user. The results are
shown in the third bars of each diagram for the respective browsers in Figure 5.

Though the third scenario represents the “worst case”, adding the time for the
server communication to the time needed for browser internal decision making,
the overhead for the client-side decision making is small enough and thus negligi-
ble compared to the networking overhead. Therefore, the mixed decision making
scenario performs roughly the same as with server-side decision making only
and comparably, an insufficient whitelist does not introduce an affecting disad-
vantage. However, the second experiment shows that the optimization through
possible client-side decision making introduces a significant improvement and
makes our approach practicable.

6 Related work

Compared to the CSP standard 1.0 [36], the successor standard 2.0 [37] includes
several new features and eliminates certain shortcomings. For example, the new
plugin-types directive restricts the possible MIME-types of embedded media,
the child-src replaces the frame-src directive to cover both, iframes and work-
ers, or the frame-ancestor which attempts to supersede the X-Frame-Options
HTTP request header. However, both standards note that they do not intent to
influence the workflow of extensions. Our approach only detects policy modifi-
cations and is widely independent from the CSP specification. This makes the
endorsement mechanism compatible with both CSP 1.0 and CSP 2.0.

Weissbacher et al. [39] measure a low deployment rate of CSP and conduct
studies to analyze the practical challenges for deploying CSP policies. They
point out that it is difficult to define a policy for a web page that utilizes the full
potential of CSP. One of their studies is on inferring policies by running the server
in the report-only mode for CSP, collecting the reports and helping developers
to define and revise policies. Weissbacher et al. note the conflict of browser
extension and web page functionality and suggest exempting extensions from
the CSP policies altogether. Our mechanism offers flexibility on the server side,
where exempting, denying or selectively granting are all possible alternatives.

Fazzini et al. propose AutoCSP [9], a PHP extension that automatically
infers a CSP policy from web pages on HTML code generation. In our approach
web pages are queried normally and a server is initially unaware of any installed
extensions and possible CSP modifications. In fact, even after a modification, the
server does not learn anything about installed extensions but only receives the
modified CSP policy for endorsement. In this way, AutoCSP and our approach
complement each other.

UserCSP [29] is a Firefox extension that allows a user to manually specify a
CSP policy for web pages herself. Besides that this approach requires a certain
level of expertise and a certain degree of insight into the web pages functionality,
it cannot protect from non-compliant CSP policy modifications by other exten-
sions. Other implementations infer a CSP policy based on the in the browser
rendered page [16,33]. These approaches assume an untampered version of the
web page, i.e. unmodified by browser extensions or untouched by web attackers.
Therefore, they are helpful for finding a suitable CSP policy but the results give
no guarantees and should be manually inspected by a web administrator.

The analysis of browser extensions has recently received more attention.
The focus lies either on the detection of maliciously behaving browser exten-
sions [18,1,32], infection and protection of extensions from dynamically loaded
third party code [4] or the protection of web pages from malicious browser ex-
tensions [5,7]. Orthogonal to this, we do not analyze the extension behavior itself
but rather observe how extensions affect a web page’s security for the particular
case of CSP policies.

In a line of work to secure JavaScript in browser extensions, Dhawan and
Ganapathy [8] develop Sabre, a system for tracking the flow of JavaScript ob-
jects as they are passed through the browser subsystems. Bandhakavi, et al. [2]

propose a static analysis tool, VEX, for analyzing Firefox extensions for secu-
rity vulnerabilities. Heule et al. [15] discuss the risks associated with the trust
that browsers provide to extensions and look beyond CSP for preventing privacy
leaks by a confinement system.

Other works study the different development kits for extensions of common
web browsers [19,3,7]. Though we have observed the effective behavior of content
scripts in browsers, our interest has been only common practices of browser
extensions on the market and the enforcement of CSP policies in case of content
injections through content scripts into web pages.

7 Conclusion

We have investigated the empirical and conceptual aspects of the tension between
the power of browser extensions and the CSP policy of web sites. We have
shown that the state of the art in today’s practice includes both invasive page
modification and the modification of the CSP policy itself. This leads to three
classes of vulnerabilities: third party code inclusion, enabling XSS, and user
profiling. We have presented an empirical study with all free Chrome extension
from Chrome web store identifying extensions with over a million of users in
each category.

With the goal to facilitate a wider adoption of CSP, we have presented an
endorsement mechanism that allows extensions and servers to amend the CSP
policy on the fly. We have evaluated the mechanism on both the Firefox and
Chrome versions of the popular Rapportive extension, indicating the practicality
of the approach.

Following responsible disclosure, we have reported the results of our empirical
study to Google. Since the time of the study, three extensions with invasive CSP
modifications have been removed from the Chrome store, including the one with
1.2 million users that we discuss in the user profiling category.

Future work includes exploring the possibilities of user involvement in the
CSP policy amendments. A GUI notification might be useful to allow ignoring
the endorsement rejects from the server.

In this context, an empirical study along the lines of Maggi et al. [21] may
reveal the real-world impact of restrictions imposed by CSP policies as described
in this paper, together with their perception by human users.

Acknowledgments Thanks are due to Federico Maggi, Adrienne Porter Felt,
and the anonymous reviewers for the helpful comments and feedback. This work
was funded by the European Community under the ProSecuToR and WebSand
projects and the Swedish research agencies SSF and VR.

References

1. S. Van Acker, N. Nikiforakis, L. Desmet, F. Piessens, and W. Joosen. Monkey-in-
the-browser: malware and vulnerabilities in augmented browsing script markets.
In ASIA CCS ’14, 2014.

2. S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and M. Winslett.
Vetting browser extensions for security vulnerabilities with vex. Commun. ACM,
2011.

3. A. Barth, A. Porter Felt, P. Saxena, and A. Boodman. Protecting browsers from
extension vulnerabilities. In NDSS, 2010.

4. A. Barua, M. Zulkernine, and K. Weldemariam. Protecting web browser extensions
from javascript injection attacks. In ICECCS, 2013.

5. L. Bauer, S. Cai, L. Jia, T. Passaro, and Y. Tian. Analyzing the dangers posed by
Chrome extensions. In IEEE CNS, 2014.

6. BuiltWith. Content security policy usage statistics. http://trends.builtwith.

com/docinfo/Content-Security-Policy. accessed: Feb 2015.
7. W. Chang and S. Chen. Defeat information leakage from browser extensions via

data obfuscation. In Information and Communications Security, 2013.
8. M. Dhawan and V. Ganapathy. Analyzing information flow in javascript-based

browser extensions. In ACSAC, 2009.
9. M. Fazzini, P. Saxena, and A. Orso. AutoCSP: Automatically Retrofitting CSP to

Web Applications, 2015.
10. Google. Chrome web store. https://chrome.google.com/webstore/category/

extensions. accessed: Feb 2015.
11. Google. Chromium. http://dev.chromium.org/Home. accessed: Feb 2015.
12. Google. Content security policy (csp) - google chrome. https://developer.

chrome.com/extensions/contentSecurityPolicy. accessed: Feb 2015.
13. Google. Gmail. https://www.gmail.com/. accessed: Feb 2015.
14. Google. Reject the unexpected - content security policy in gmail. http://

gmailblog.blogspot.se/2014/12/reject-unexpected-content-security.html.
accessed: Feb 2015.

15. S. Heule, D. Rifkin, D. Stefan, and A. Russo. The most dangerous code in the
browser. In HotOS, 2015.

16. A. Javed. CSP AiDer: An automated recommendation of content security policy
for web applications. Poster at IEEE Symposium on Security & Privacy 2011.

17. Joyent. Node.js. http://www.nodejs.org/. accessed: Feb 2015.
18. A. Kapravelos, Ch. Grier, N. Chachra, Ch. Kruegel, G. Vigna, and V. Paxson.

Hulk: Eliciting Malicious Behavior in Browser Extensions. In USENIX Sec., 2014.
19. R. Karim, M. Dhawan, V. Ganapathy, and Ch. Shan. An analysis of the mozilla

jetpack extension framework. In ECOOP, 2012.
20. LinkedIn. Rapportive. https://rapportive.com. accessed: Feb 2015.
21. F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross, Ch. Kruegel, and

G. Vigna. Two years of short urls internet measurement: security threats and
countermeasures. In WWW, 2013.

22. mitmproxy. https://mitmproxy.org/. accessed: Feb 2015.
23. Mozilla. Firefox nightly. https://nightly.mozilla.org/. accessed: Feb 2015.
24. N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, Ch. Kruegel,

F. Piessens G., and Vigna. You are what you include: Large-scale evaluation of
remote javascript inclusions. In CCS, 2012.

25. OWASP. Clickjacking. https://www.owasp.org/index.php/Clickjacking. ac-
cessed: Feb 2015.

26. OWASP. Content security policy. https://www.owasp.org/index.php/Content_

Security_Policy. accessed: Feb 2015.
27. OWASP. Cross-site scripting. https://www.owasp.org/index.php/Cross-site_

Scripting_%28XSS%29. accessed: Feb 2015.

http://trends.builtwith.com/docinfo/Content-Security-Policy
http://trends.builtwith.com/docinfo/Content-Security-Policy
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
http://dev.chromium.org/Home
https://developer.chrome.com/extensions/contentSecurityPolicy
https://developer.chrome.com/extensions/contentSecurityPolicy
https://www.gmail.com/
http://gmailblog.blogspot.se/2014/12/reject-unexpected-content-security.html
http://gmailblog.blogspot.se/2014/12/reject-unexpected-content-security.html
http://www.nodejs.org/
https://rapportive.com
https://mitmproxy.org/
https://nightly.mozilla.org/
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Content_Security_Policy
https://www.owasp.org/index.php/Content_Security_Policy
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

28. OWASP. Top 10 2013. https://www.owasp.org/index.php/Top_10_2013. ac-
cessed: Feb 2015.

29. K. Patil, T. Vyas, F. Braun, M. Goodwin, and Z. Liang. Poster: UserCSP - User
Specified Content Security Policies. In SOUPS, 2013.

30. Rapportive :: Reviews :: Add-ons for firefox. https://addons.mozilla.org/

en-US/firefox/addon/rapportive/reviews/. accessed: Feb 2015.
31. Syrian Electronic Army uses Taboola ad to hack Reuters

(again). https://nakedsecurity.sophos.com/2014/06/23/

syrian-electronic-army-uses-taboola-ad-to-hack-reuters-again/.
32. H. Shahriar, K. Weldemariam, M. Zulkernine, and T. Lutellier. Effective detection

of vulnerable and malicious browser extensions. Computers & Security, 2014.
33. B. Sterne. Content security policy recommendation bookmarklet. http://brandon.

sternefamily.net/2010/10/content-security-policy-recommendation-bookmarklet/.
accessed: Feb 2015.

34. Taboola. Taboola — drive traffic and monetize your site. http://www.taboola.

com/. accessed: Feb 2015.
35. Can I Use. Content security policy 1.0. http://caniuse.com/#feat=

contentsecuritypolicy. accessed: Feb 2015.
36. W3C. Csp 1.0. http://www.w3.org/TR/CSP/. accessed: Feb 2015.
37. W3C. Csp 2.0. http://www.w3.org/TR/CSP2/. accessed: Feb 2015.
38. W3C. World wide web consortium. http://www.w3.org/. accessed: Feb 2015.
39. M. Weissbacher, T. Lauinger, and W. Robertson. Why Is CSP Failing? Trends

and Challenges in CSP Adoption. In RAID, 2014.
40. WhiteHat. Content security policy - whitehat security blog. https://blog.

whitehatsec.com/content-security-policy/. accessed: Feb 2015.

A Gmail CSP policy (12. January 2015)

s c r i p t−s r c https : //∗ . t a lkgadget . goog l e . com ’ s e l f ’ ’ unsafe−
i n l i n e ’ ’ unsafe−eval ’ https : // ta lkgadget . goog l e . com https :
//www. g o o g l e a p i s . com https : //www−gm−o p e n s o c i a l .
goog l eu s e r cont en t . com https : // docs . goog l e . com https : //www.
goog l e . com https : // s . ytimg . com https : //www. youtube . com
https : // s s l . google−a n a l y t i c s . com https : // ap i s . goog l e . com
https : // c l i e n t s 1 . goog l e . com https : // s s l . g s t a t i c . com https :
//www. g s t a t i c . com blob : ;

frame−s r c https : //∗ . t a lkgadget . goog l e . com https : //www. g s t a t i c .
com ’ s e l f ’ https : // accounts . goog l e . com https : // ap i s . goog l e
. com https : // c l i e n t s 6 . goog l e . com https : // content .
g o o g l e a p i s . com https : // mail−attachment . goog l eu s e r cont ent .
com https : //www. goog l e . com https : // docs . goog l e . com https :
// dr iv e . goog l e . com https : //∗ . g oog l eu s e r cont ent . com https :
// feedback . goog l eu s e r cont ent . com https : // ta lkgadget . goog l e
. com https : // i s o l a t e d . mail . goog l e . com https : //www−gm−
o p e n s o c i a l . goog l eu s e r cont ent . com https : // p lus . goog l e . com
https : // w a l l e t . goog l e . com https : //www. youtube . com https : //
c l i e n t s 5 . goog l e . com https : // c i 3 . goog l eu s e r cont en t . com ;

object−s r c https : // mail−attachment . goog l eu s e r cont ent . com ;
report−u r i / mail / c sp r epor t

https://www.owasp.org/index.php/Top_10_2013
https://addons.mozilla.org/en-US/firefox/addon/rapportive/reviews/
https://addons.mozilla.org/en-US/firefox/addon/rapportive/reviews/
https://nakedsecurity.sophos.com/2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack-reuters-again/
https://nakedsecurity.sophos.com/2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack-reuters-again/
http://www.taboola.com/
http://www.taboola.com/
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP2/
http://www.w3.org/
https://blog.whitehatsec.com/content-security-policy/
https://blog.whitehatsec.com/content-security-policy/

	May I? - Content Security Policy Endorsement for Browser Extensions

